Genome-Wide Sequence and Expression Analysis of the NAC Transcription Factor Family in Polyploid Wheat
نویسندگان
چکیده
Many important genes in agriculture correspond to transcription factors (TFs) that regulate a wide range of pathways from flowering to responses to disease and abiotic stresses. In this study, we identified 5776 TFs in hexaploid wheat (Triticum aestivum) and classified them into gene families. We further investigated the NAC family exploring the phylogeny, C-terminal domain (CTD) conservation, and expression profiles across 308 RNA-seq samples. Phylogenetic trees of NAC domains indicated that wheat NACs divided into eight groups similar to rice (Oryza sativa) and barley (Hordeum vulgare). CTD motifs were frequently conserved between wheat, rice, and barley within phylogenetic groups; however, this conservation was not maintained across phylogenetic groups. Three homeologous copies were present for 58% of NACs, whereas evidence of single homeolog gene loss was found for 33% of NACs. We explored gene expression patterns across a wide range of developmental stages, tissues, and abiotic stresses. We found that more phylogenetically related NACs shared more similar expression patterns compared to more distant NACs. However, within each phylogenetic group there were clades with diverse expression profiles. We carried out a coexpression analysis on all wheat genes and identified 37 modules of coexpressed genes of which 23 contained NACs. Using gene ontology (GO) term enrichment, we obtained putative functions for NACs within coexpressed modules including responses to heat and abiotic stress and responses to water: these NACs may represent targets for breeding or biotechnological applications. This study provides a framework and data for hypothesis generation for future studies on NAC TFs in wheat.
منابع مشابه
In Silico Genome-Wide Screening for TnrA-Regulated Genes of Bacillus clausii
Bacillus clausii TnrA transcription factor is required for global nitrogen regulation. In order to obtain anoverview of gene regulation by TnrA in B. clausii KSMK16, the entire genome of B. clausii was screened forthe consensus sequence, 5’-TGTNAN7TNACA-3’ known as the TnrA box, and 13 transcription units werefound containing a putative TnrA box. The TnrA targets identified in...
متن کاملA Study to Assess the Role of Gluten Encoded Genes and Their Regulatory Elements in Bread Making Quality of Wheat
Introduction: Bread making quality is affected by gluten genes and balance between their expressions. Hence, it is necessary for a comprehensive research to study and compare all gluten genes and their regulating elements simultaneously. Objectives: The aim of this study was to evaluate the molecular mechanism of bread quality in the level of coding genes and regulating elements via compa...
متن کاملThe Effect of Drought Stresses, Fusarium Culmorum and Heterodera Filipjevi and their Interactions on the Expression Pattern of Transcription Factor Gene NAC69-3 in Bread Wheat
SExtended Abstract Introduction and Objective: Small grain cereals such as wheat, are affected by types of destructive environmental factors such as abiotic and biotic stresses that severely reduce crop yields. To cope with these conditions, transcription factors cause plant resistance to these stresses by activating or suppressing the expression of genes involved in the resistance responses....
متن کاملStudy of MYB Transcription Factor Gene Expression in Some Bread Wheat Cultivars of Sistan Region, Iran
Drought, an abiotic stress, considered as one of the factors limiting food resources. The plant responses to adaptive to such a condition are accompanied with changes in the expression pattern of some functional as well as regulatory genes. The MYB proteins include a big family of transcription factors which are highly important in regulating development process and immunizing responses of plan...
متن کاملBioinformatics Genome-Wide Characterization of the WRKY Gene Family in Sorghum bicolor
The WRKY gene family encodes a large group of transcription factors that regulate genes involved in plant response to biotic and abiotic stresses. Sorghum is a notable grain and forage crop in semi-arid regions because of its unusual tolerance against hot and dry environments. We identified a set of 85 WRKY genes in the S. bicolor genome and classified them into three groups (I–III). Among the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2017